Puzzle: 3D Nonlinear model of the vertical spring force of a trampoline Can mathematical approximations be compensated through curve fitting ?

ISB Newsletter, Issue Number 94 December 2004
Submitted June 9th, 2004 by W.Lutz Bauer, University of Bremen
The trampoline bed of Fig. 1 is deflected at the centre through a vertical force F . The amount of vertical deflection is d . To calculate its mathematical model we use the force vector diagrams of the longitudinal-sectional view LL' in Fig. 2 and in the cross-sectional view BB' in Fig. 3.

Fig. 3: Cross-sectional view BB'
c $\quad=$ effective spring constant
$\mathrm{L}_{0}, \mathrm{~B}_{0}=$ half length/breadth of the tramp
$\Delta L_{0}, \Delta B_{0}=$ initial extension of the springs
$\Delta \mathrm{L}, \Delta \mathrm{B}=$ extension of the springs under load
$\mathrm{F}_{\mathrm{L} 0}, \mathrm{~F}_{\mathrm{B} 0}=$ prestress force created by $\Delta \mathrm{L}_{0}, \Delta \mathrm{~B}_{0}$
$F_{L}, F_{B}=$ spring force created by $\Delta L, \Delta B$
$\mathrm{d} \quad=$ deflection of the trampoline centre
$\ell, \mathrm{b} \quad=$ half length/breadth of the rigid plate

Introduce

$$
\begin{equation*}
\mathrm{F}_{\mathrm{L} 0}=\mathrm{c} \Delta \mathrm{~L}_{0} \tag{3}
\end{equation*}
$$

and substitute (2) and (3) in (1) we get

$$
\begin{equation*}
\mathrm{F}_{\mathrm{L}}=2 \mathrm{~cd} \frac{\Delta \mathrm{~L}_{0}+\Delta \mathrm{L}}{\mathrm{~L}_{0}+\Delta \mathrm{L}} \tag{4}
\end{equation*}
$$

Using Figure 3 accordingly yields

$$
\begin{equation*}
\mathrm{F}_{\mathrm{B}}=2 \operatorname{cd} \frac{\Delta \mathrm{~B}_{0}+\Delta \mathrm{B}}{\mathrm{~B}_{0}+\Delta \mathrm{B}} \tag{5}
\end{equation*}
$$

Add Equation (4) and (5) then

$$
\begin{equation*}
\mathrm{F}=\mathrm{F}_{\mathrm{L}}+\mathrm{F}_{\mathrm{B}} \tag{6}
\end{equation*}
$$

To find an explicit solution of (6) we introduce the following approximations:

$$
\begin{align*}
& \mathrm{L}_{0}+\Delta \mathrm{L} \approx \mathrm{~L}_{0} \tag{7}\\
& \mathrm{~B}_{0}+\Delta \mathrm{B} \approx \mathrm{~B}_{0} \tag{8}
\end{align*}
$$

Substitute (4),(5),(7) and (8) in (6) then

$$
\begin{equation*}
\mathrm{F} \approx 2 \mathrm{~cd}\left[\frac{\left(\Delta \mathrm{~L}_{0}+\Delta \mathrm{L}\right)}{\mathrm{L}_{0}}+\frac{\left(\Delta \mathrm{B}_{0}+\Delta \mathrm{B}\right)}{\mathrm{B}_{0}}\right] \tag{9}
\end{equation*}
$$

Applying the Pythagorean theorem to either of the rectangular triangles of Fig. 2 and rearranging we obtain

$$
\begin{equation*}
\frac{\Delta \mathrm{L}}{\mathrm{~L}_{0}}=\sqrt{1+\frac{\mathrm{d}^{2}}{\mathrm{~L}_{0}^{2}}}-1 \tag{10}
\end{equation*}
$$

Expanding the square root into a Taylor series and using the first two terms leads to

$$
\begin{equation*}
\frac{\Delta \mathrm{L}}{\mathrm{~L}_{0}} \approx \frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~L}_{0}^{2}} \tag{11}
\end{equation*}
$$

Repeating the same procedure on either of the rectangular triangle of Fig. 3 yields

$$
\begin{equation*}
\frac{\Delta \mathrm{B}}{\mathrm{~B}_{0}} \approx \frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~B}_{0}^{2}} \tag{12}
\end{equation*}
$$

When substituting (11) and (12) in (9) and rearranging, we have

$$
\begin{equation*}
\mathrm{F} \approx 2 \mathrm{c}\left(\frac{\Delta \mathrm{~L}_{0}}{\mathrm{~L}_{0}}+\frac{\Delta \mathrm{B}_{0}}{\mathrm{~B}_{0}}\right) \mathrm{d}+\mathrm{c}\left(\frac{1}{\mathrm{~L}_{0}^{2}}+\frac{1}{\mathrm{~B}_{0}^{2}}\right) \mathrm{d}^{3} \tag{13}
\end{equation*}
$$

To further improve the models performance, a rigid weightless plate is centrally placed on the trampoline to take the foot contact area of the gymnast into consideration, which causes a force $\mathrm{F}_{1}>\mathrm{F}$ for the same deflection d .

Fig. 4: Trampoline with a weightless rigid plate of an area $4 b \ell *)$

Thus the cross-sectional view has changed and is shown in Fig. 5. The modified longitudinalsectional view can be set up accordingly when changing B to L, b to ℓ and β to α.

Fig. 5: Cross-sectional view of the modified model
$\Delta \beta \ll \beta$
$\Delta \mathrm{F}_{\mathrm{B}}=$ partial increase of the spring force due to the rigid plate
$b=$ half breadth of the plate
and for the longitudinal view
$\Delta \alpha \ll \alpha$
$\Delta \mathrm{F}_{\mathrm{L}}=$ partial increase of the spring force due to the rigid plate
$\ell=$ half length of the rigid plate

Consequently the increase $\Delta \mathrm{F}$ and the total spring force F_{1} for the same deflection d due to the rigid plate can be calculated as
$\Delta \mathrm{F}=\Delta \mathrm{F}_{\mathrm{B}}+\Delta \mathrm{F}_{\mathrm{L}}$
(14) and
$\mathrm{F}_{1} \approx \mathrm{~F}+\Delta \mathrm{F}$
(15) respectively.

Problems for solution

1. Use Fig. 5 and show that

$$
\begin{equation*}
\Delta \mathrm{F} \approx \mathrm{c}\left(\frac{\ell}{\mathrm{~L}_{0}^{3}}+\frac{\mathrm{b}}{\mathrm{~B}_{0}^{3}}\right) \mathrm{d}^{3} \tag{16}
\end{equation*}
$$

Combine (13), (15) and (16) and the mathematical model of the vertical spring force F_{1} of the trampoline bed with the rigid plate should come out as follows:

$$
\begin{equation*}
\mathrm{F}_{1} \approx 2 \mathrm{c}\left(\frac{\Delta \mathrm{~L}_{0}}{\mathrm{~L}_{0}}+\frac{\Delta \mathrm{B}_{0}}{\mathrm{~B}_{0}}\right) \mathrm{d}+\mathrm{c}\left(\frac{1}{\mathrm{~L}_{0}^{2}}+\frac{1}{\mathrm{~B}_{0}^{2}}+\frac{\ell}{\mathrm{L}_{0}^{3}}+\frac{\mathrm{b}}{\mathrm{~B}_{0}^{3}}\right) \mathrm{d}^{3} \tag{17}
\end{equation*}
$$

2. Equation (17) is of the form $\mathrm{F}_{1} \approx \mathrm{k}_{1} \mathrm{~d}+\mathrm{k}_{3} \mathrm{~d}^{3}$. Check its plausibility when L_{0} and B_{0} approaches large values, when ℓ and b approaches zero and when $\Delta \mathrm{L}_{0}$ and $\Delta \mathrm{B}_{0}$ approaches small and large values respectively.
3. Asses the impact of the approximations due to equations (7),(8), (11), (12) and (16) on the mathematical model of equation (17).
4. The validation of the model can be made with experimental measurements at a real trampoline and through a curve fitting procedure. Can this curve fitting procedure compensate for eventual parametrical and structural errors of the model which are due to the applied mathematical approximations?
5. Write down the reasons, why the independent variable d of equation (17) only has positive odd exponents.
6. Why is it sufficient to solely use the cross-sectional and longitudinal-sectional view of Fig. 2 and Fig. 3 for setting up the mathematical model of Eq. (17) and disregard all the other possible isosceles triangles through F ?
*) Kraft, M.: Eine einfache Näherung für die vertikale Federkraft des Trampolinsprungtuchs. (A simple approximation of the vertical spring force of a trampoline bed.) http://opus.tu-bs.de/opus/volltexte/2001/214
