Martin Kraft

Eine einfache Näherung für die vertikale Federkraft des Trampolinsprungtuches

Veröffentlicht am 6. Juli 2001 im Online-Publikationssystem der Technischen Universität Braunschweig unter http://opus.tu-bs.de/opus/volltexte/2001/214

Zusammenfassung: Bisherige Arbeiten zur Biomechanik beim Trampolinspringen stellen die vertikale Federwirkung des Trampolinsprungtuches vereinfacht als ideale Feder dar. Bedingt durch die Aufhängung an in Ruhelage horizontal gespannten Federn verhält sich die vertikale Tuchkraft jedoch anders als eine ideale Feder. Ausgehend von einem zweidimensionalen statischen Modell, welches gegenüber der dreidimensionalen Wirklichkeit immer noch vereinfacht ist, wird eine Formel für die vertikale Tuchkraft in Abhängigkeit von der Durchdrücktiefe hergeleitet. Die Parameter werden durch Kraft-/Weg-Messungen an einem konkreten Trampolin bestimmt. Durch Simulationsrechnungen werden die Zeiten des Tuchkontakts, die maximale Durchdrücktiefe und die maximale vertikale Beschleunigung bei verschiedenen Körpermassen und Sprunghöhen berechnet und in Tabellenform dargestellt. Abschließend wird auf Beobachtungen und Messergebnisse anderer Autoren eingegangen, welche mit Hilfe des hier vorgestellten Modells eine bessere Erklärung finden.

Abstract: Some previous papers about biomechanics in trampolining use the ideal spring as a model approach for the vertical force of the trampoline bed. Due to the fixation of the trampoline bed by horizontal springs (while not depressed), the vertical force characteristics differ from an ideal spring. Starting from a two-dimensional static model, which is still simplified from the three-dimensional nature of the trampoline bed, a formula is deduced for the calculation of the vertical force of the trampoline bed as a function of the distance of vertical depression. The parameters are calculated from distance/force measurements with a single existing trampoline. By means of computational simulation the times of bed contact, the maximal bed depression and the maximal vertical acceleration are calculated for different body masses and bouncing heights. The results are presented in tabular form. Finally some previous observations and results of other authors are discussed, which can be explained using the herein presented two-dimensional model.

1 Einleitung

In einigen Veröffentlichungen zur Biomechanik des Trampolinturnens wird vereinfachend angenommen, dass die vertikalen Federeigenschaften des Sprungtuches denjenigen einer idealen Feder vergleichbar sind (Glitsch und Henrichs, 1992; Henrichs, 1991; Vaughan, 1980).

Die ideale Feder hat nach dem Hookeschen Gesetz die Eigenschaft, dass die von ihr ausgeübte Rückstellkraft F_F proportional zur Ausdehnung Δl der Feder gegenüber der kraftlosen Ruhelage ist:

(Hering *et al.*, 1992; Walcher, 1989); die Federkonstante *D* ist eine feste Eigenschaft der Feder.

Das Trampolintuch verhält sich in vertikaler Richtung allerdings nicht wie eine ideale Feder, selbst wenn die eingebauten Federn die ideale Federeigenschaft hätten.

Die vertikale Kraft, die das Tuch auf den Turner ausübt, geht nämlich in eine andere Richtung als die Dehnungsrichtung der Federn. Wird das Tuch nur wenig durchgedrückt, so wirkt die Kraft der Federn nahezu im rechten Winkel zur vertikalen Kraft des Sprungtuches. Es ist deshalb auf den ersten Zentimetern nur eine verhältnismäßig geringe Kraft zur Auslenkung des Sprungtuches erforderlich.

Abb. 1: Prinzip der Zerlegung der vertikalen Tuchkraft F_V auf die Kräfte F_F in Richtung der seitlichen Federn.

Je tiefer das Sprungtuch durchgedrückt wird, umso mehr nähert sich die Kraftrichtung der Federn der vertikalen Tuchkraft an. Die Tuchkraft nimmt deshalb nicht nur proportional zur Auslenkung des Tuches zu, sondern stärker. Bei geringer Auslenkung wirkt das Tuch wie eine weiche Feder (mit geringer "Federkonstante"); je stärker das Tuch durchgedrückt wird, umso härter (mit höherer "Federkonstante") federt es.

In diesem Beitrag wird eine Näherungsformel für die vertikale Federkraft des Sprungtuches hergeleitet, die diese geometrischen Verhältnisse berücksichtigt. Das dabei zu Grunde gelegte Modell des Sprungtuches ist immer noch eine erhebliche Vereinfachung gegenüber der vollständigen Erfassung der mechanischen Verhältnisse. Dämpfungseigenschaften bleiben völlig außer Betracht.

2 Herleitung der Formel

Abb. 2: Zweidimensionales Modell des durchgedrückten Trampolintuches.

Wir betrachten im Folgenden einen vertikalen Schnitt durch den Mittelpunkt des Trampolintuches in Querrichtung (senkrecht zur Längsrichtung) des Trampolins. Das Trampolintuch ist mit Federn an den Punkten R_1 und R_2 in den festen Rahmen des Trampolins frei drehbar eingehängt. Die eigene Masse des Tuches und der Federn wird im Folgenden vernachlässigt.

In gleichen Abständen $\frac{w}{2}$ links und rechts der Tuchmitte wirkt jeweils die gleiche Kraft mit einem Betrag von $-\frac{F_V}{2}$ vertikal nach unten. Das Tuch ist an den beiden Kraftangriffspunkten L₁ und L₂ um die Tiefe -s gegenüber der Ruhelage nach unten durchgedrückt.

In der Ruhelage des Tuches (s = 0) ist b der Abstand zwischen einem Kraftangriffspunkt L und dem nächstliegenden Einhängungspunkt R. Die Gesamtbreite des Tuches einschließlich der Federn beträgt somit zwischen den beiden Einhängungspunkten w + 2b.

Bereits in der Ruhelage sind die Federn gespannt und üben eine horizontale Zugkraft auf das Tuch aus; diese Ausdehnung der Federn in der Ruhelage des Tuches bezeichnen wir als Nullausdehnung l_0 . Die Nullausdehnung l_0 ist in der Teilbreite *b* enthalten.

Im durchgedrückten Zustand dehnen sich die Federn auf beiden Seiten zusätzlich um l_1 aus; der Abstand l zwischen Kraftangriffspunkt L und Einhängungspunkt R beträgt also

$$l=b+l_1$$
.

Die von den Federn auf jeder Seite aufzubringende Federkraft mit dem Betrag F_F wirkt in Richtung von den Kraftangriffspunkten L zu den Einhängungspunkten R. Ihr Betrag ist nach dem Hookeschen Gesetz proportional zur Ausdehnung der Feder

$$F_F = D \cdot (l_0 + l_1)$$

mit der Federkonstante D.

Wegen $l_1 = l - b$ und $l = \sqrt{s^2 + b^2}$ ist

$$F_F = D \cdot (l_0 + \sqrt{s^2 + b^2} - b) \tag{1}$$

An den Kraftangriffspunkten L läßt sich die Federkraft F_F in eine horizontale Kraft in Richtung des mittleren horizontalen Tuchabschnittes zerlegen, die hier nicht weiter interessiert, und in die vertikale Kraft $\frac{F_V}{2}$.

$$\frac{F_V}{2} = F_F \cdot \sin \alpha$$

oder mit $sin \alpha = \frac{-s}{l}$ und $l = \sqrt{s^2 + b^2}$:

$$\frac{F_V}{2} = F_F \cdot \frac{-s}{\sqrt{s^2 + b^2}}.$$

Für $s \neq 0$ ist

$$F_F = \frac{F_V \cdot \sqrt{s^2 + b^2}}{-2s}.$$
 (2)

Aus (1) und (2) ergibt sich

$$\frac{F_V \cdot \sqrt{s^2 + b^2}}{-2s} = D \cdot (l_0 + \sqrt{s^2 + b^2} - b)$$

und daraus die Beziehung zwischen der Durchdrücktiefe s des Trampolintuches und der vertikalen Kraft F_V :

$$F_V = -D \cdot \frac{2s \cdot (l_0 + \sqrt{s^2 + b^2} - b)}{\sqrt{s^2 + b^2}}$$
(3)

3 Experimentelle Parameterbestimmung

Für die experimentelle Bestimmung der Parameter stand ein langjährig gebrauchtes Eurotramp Grand Master Exklusiv mit 6 mm Tuch zur Verfügung. Die Gesamtbreite des Tuches einschließlich Federn betrug 2913 mm (Abstand der Einhängungspunkte R der Federn am Rahmen).

Die Federn waren unterschiedlich alt. Zur Untersuchung ihrer Eigenschaften wurden acht Federn beliebig ausgewählt, am Tuch ausgehängt und nacheinander Gewichte von 0 kg, 5 kg, 10 kg, 15 kg und 20 kg eingehängt. Ab 5 kg zeigen die Federn das ideale Verhalten: Die Ausdehnung ist proportional zum Gewicht; die Federkonstante der Einzelfedern beträgt im Mittel $D_F = 703 \frac{\text{N}}{\text{m}}$ (Standardabweichung $\sigma = 8 \frac{\text{N}}{\text{m}}$).

Die Länge der Federn ohne Gewicht beträgt 233 mm. (Die Längenangaben der Federn gelten im folgenden immer von Einhängungspunkt zu Einhängungspunkt). Die Federn sind jedoch so beschaffen, dass sie im Ruhezustand eine Vorspannung haben. Extrapoliert man das lineare Ausdehnungsverhalten der Federn bei Lasten ab 5 kg auf eine Last von 0 kg, berechnet sich eine theoretische Länge der unbelasteten Feder von 207 mm ($\sigma = 10 \text{ mm}$).

Im eingehängten Zustand und in Ruhelage des Tuches beträgt die Länge der seitlichen Federn im Mittel 386 mm. Die Federausdehnung in Ruhelage des Tuches (bezogen auf die theoretische Länge der unbelasteten Feder) beträgt somit $l_0 = 386$ mm – 207mm = 179mm.

Auf die Tuchmitte wurde ein rechteckiger Rahmen der Größe 20 cm x 20 cm gelegt und nacheinander in fünfzehn (nicht gleichabständigen) Stufen mit Gewichten bis zu 362 kg beschwert, womit das Tuch um bis zu 608 mm heruntergedrückt wurde.

Die Teilbreite *b* bestimmt sich aus der Gesamtbreite des Tuches und der Breite des aufgelegten Rahmens zu $b = \frac{1}{2}(2913 \text{mm} - 200 \text{mm}) = 1356 \text{mm}.$

Aus den gemessenen Gewichtskräften F_G (= $-F_V$ in Ruhe) und Durchdrücktiefen *s* wurde die Federkonstante *D* in Gleichung (3) durch Minimierung der Summe der Fehlerquadrate zu *D* = $14080\frac{\text{N}}{\text{m}}$ bestimmt. Dies entspricht (auf jeder Seite) ziemlich genau der Zugkraft von 20 Federn.

4 Variation der Auflagefläche

Die statischen Kraft-/Tiefemessungen wurden mit einer auf der Tuchmitte liegenden Auflagefläche von 20 cm x 20 cm durchgeführt. Dies entspricht in etwa der Ausdehnung der von den beiden Füßen eines Turners durchgedrückten Fläche. Da mit dem verwendeten Auflagerahmen nur Gewichte bis 362 kg aufgelegt werden konnten, wurden mit einem etwas größeren Brett fünf weitere Messungen mit Gewichten zwischen 153 kg und 533 kg durchgeführt. Das Brett lag ebenfalls in Tuchmitte und hatte eine Ausdehnung von 40 cm in Quer- und 50 cm in Längsrichtung.

Durch die 40 cm breite Auflagefläche verringert sich *b* auf $b_2 = 1256$ mm. Die rechnerische Näherung für *D* ergab sich aus diesen fünf Messwerten zu $D = 15790 \frac{\text{N}}{\text{m}}$.

Es wurde versucht, die Messwerte, die mit den beiden verschieden großen Auflageflächen gewonnen wurden, im Modell zusammen zu führen. Bei der Optimierungsrechnung wurden alle zwanzig Messwerte jeweils mit dem für sie zutreffenden *b* eingesetzt. Eine befriedigende Annäherung an die Messwerte gelingt dabei nur, wenn man (neben den beiden verschiedenen Teilbreiten b_1 und b_2) die unterschiedlichen Längen der Auflageflächen berücksichtigt. Bei einer längeren Auflagefläche verteilt sich die Kraft auf mehr seitliche Federn und die rechnerische Federkonstante *D* erhöht sich.

Für die Berücksichtigung der unterschiedlichen Auflagelängen $a_1 = 20$ cm und $a_2 = 50$ cm wurde angenommen, dass seitlich der Auflageflächen eine genau der Länge der Auflagefläche entsprechende Zahl von Federn um l_1 ausgedehnt wird. Vor und hinter der Auflagefläche befinden sich

Abb. 3: Die vertikale Kraft F_V eines Trampolintuches in Abhängigkeit von der Durchdrücktiefe *s* bei einem 6 mm Eurotramp und einer Auflagefläche von 20 cm x 20 cm. Die Kreise kennzeichnen die gemessenen Punkte. Die eingezeichnete Kurve wurde aus der theoretischen Kraft-/Weg-Beziehung nach Formel 3 und den vorgefundenen Geräteparametern ($l_0 = 179$ mm, b = 1356 mm) durch Optimierungsrechnung bestimmt; die Modellfederkonstante *D* ergab sich dabei zu *D* = 14080 N/m.

Abb. 4: Die vertikale Kraft F_V eines Trampolintuches in Abhängigkeit von der Durchdrücktiefe *s* bei einem 6 mm Eurotramp und Auflageflächen von 20 cm x 20 cm ($D = 14080 \frac{\text{N}}{\text{m}}$, untere Kurve, entspricht Abb. 3) und 40 cm x 50 cm ($D = 15790 \frac{\text{N}}{\text{m}}$, obere Kurve). Die Kreise kennzeichnen die gemessenen Punkte.

die Zonen der mit zunehmendem Abstand weniger ausgedehnten Federn. Die Länge und Beschaffenheit dieser Zonen ist von der Länge der Auflagefläche unabhängig und wurde für die Optimierung durch eine von der Tiefe *s* unabhängige konstante Länge *c* und eine linear von der Federausdehnung l_1 abhängige Länge $d \cdot l_1$ dargestellt ($b_1 = 1356$ mm):

$$F_V = -(a_n + c + d \cdot l_1) \cdot D' \cdot \frac{2s \cdot (l_0 + \sqrt{s^2 + b_n^2} - b_n)}{\sqrt{s^2 + b_n^2}} , \ n = 1, 2$$

Die Optimierung (Minimierung der Summe der Fehlerquadrate) mit allen zwanzig Messwerten ergab $D' = 5680 \frac{\text{N}}{\text{m}^2}$, c = 2,28m und d = 0. Die Ausdehnung der vor und hinter der Auflagefläche liegenden Zonen ist also *nicht* linear von der Federausdehnung l_1 abhängig, sondern kann konstant durch eine voll durchgedrückte Länge von 2,28m dargestellt werden (vor und hinter der Auflagefläche zusammen). D' bedeutet in diesem Fall in etwa die Federkonstante je Meter durchgedrücktem Tuch und deckt sich nicht ganz mit der rechnerischen Federkonstante je Meter eingehängter Federn, welche sich bei einem Federabstand von 11cm zu $703 \frac{\text{N}}{\text{m}} \cdot 1\text{m}/11\text{cm} = 6390 \frac{\text{N}}{\text{m}}$ berechnet.

Die Werte $D' = 5680 \frac{\text{N}}{\text{m}^2}$ und c = 2,28m erlauben jedenfalls die Zusammenführung aller zwanzig Messwerte (Abb. 4). Für die Länge der Auflagefläche $a_1 = 20\text{cm}$ resultiert die oben genannte Federkonstante je Seite von $(a_1 + c) \cdot D' = 2,48 \cdot 5680 \frac{\text{N}}{\text{m}} = 14086 \frac{\text{N}}{\text{m}}$. Für $a_2 = 50\text{cm}$ resultiert die aus den betreffenden fünf Messwerten bestimmte Federkonstante je Seite von von $(a_2 + c) \cdot D' = 2,78 \cdot 5680 \frac{\text{N}}{\text{m}} = 15790 \frac{\text{N}}{\text{m}}$.

5 Vertikale Bahnkurve und Kontaktzeit

Für die Biomechanik des Trampolinturnens ergeben sich aus der hier vorgestellten Kraft-/ Weg-Beziehung Folgerungen für den vertikalen Bewegungsablauf.

Bei der Modellierung des Trampolintuches durch eine ideale vertikale Feder mit konstantem Kraft-/Weg-Verhältnis D = -F/s ergibt sich die Bahnkurve einer harmonischen Schwingung in der Form einer um $s_0 = (m \cdot g)/D$ schwingenden Sinuskurve (Tipler, 1994).

Für eine beliebige Kraft-/Weg-Beziehung F(s) ergibt sich die vertikale Bahnkurve im Trampolintuch als Lösung der Differentialgleichung

$$\ddot{s} = \frac{F(s)}{m} + g \tag{4}$$

(vgl. Tipler, 1994), wobei $g \approx -9.81 m/s^2$) die nach unten gerichtete Erdbeschleunigung ist.

Im Rahmen dieser Arbeit ist es nicht gelungen, eine geschlossene Lösung für diese nichtlineare Differentialgleichung zu finden. Die Bahnkurve und weitere dynamische Parameter mussten deshalb durch numerische Simulation ermittelt werden (Anhang B).

In Abb. 5 sind Bahnkurve, Geschwindigkeit und Beschleunigung während einer Tuchkontaktzeit dargestellt. Zum Vergleich ist eine sinusförmige Bewegung gestrichelt gezeichnet.

Die Geschwindigkeit des Körpers im Moment der Tuchberührung beträgt nach einem Fall aus 2,50 m Höhe 7,0 $\frac{m}{s}$ (25,2 $\frac{km}{h}$). Während der ersten Zentimeter im Tuch ist die aus der Tuchkraft resultierende Beschleunigung nach oben noch geringer als die Erdbeschleunigung. Die Beschleunigung wechselt ihr Vorzeichen erst bei derjenigen Durchdrücktiefe, bei der $F_V(s) = -F_G = -g \cdot m$ ist.

In Anlehnung an Bradt (1988) bezeichnen wir die in Tab. 1 definierten Zeitpunkte während des Tuchkontaktes.

t_0	Erster Tuchkontakt	s = 0
t_1	Erster Vorzeichenwechsel der Beschleunigung	$\ddot{s} = 0$
t_2	Tiefster Punkt des Tuches	$\dot{s} = 0$
t_3	Zweiter Vorzeichenwechsel der Beschleunigung	$\ddot{s} = 0$
t_4	Letzter Tuchkontakt.	s = 0

Tab. 1: Markante Zeitpunkte während des Tuchkontaktes nach Bradt (1988).

Bei der in Abb. 5 dargestellten 70 kg schweren Person mit einer Sprunghöhe von 2,50 m Höhe (Abstand Fußsohlen – Sprungtuch) liegt der Zeitpunkt t_1 um 24 ms nach t_0 . Zum Zeitpunkt t_1 ist das Tuch bereits 17,5 cm durchgedrückt; an dieser Stelle ist der Betrag der Tuchkraft F_V gleich dem Betrag der Gewichtskraft F_G (687 N). Die Geschwindigkeit erhöht sich bis zum Zeitpunkt t_1 auf 7,13 $\frac{m}{s}$ (25,7 $\frac{km}{h}$).

Die Tuchkontaktzeit ist — anders als bei einer idealen Feder — nicht nur von der Masse sondern auch von der Sprunghöhe abhängig (Tab. 2). Bei gleicher Masse verringert sich die Tuchkontaktzeit mit zunehmender Sprunghöhe.

Abb. 5: Vertikale Bahnkurve (*s*), Geschwindigkeit (*s*) und Beschleunigung (*s*) während des Tuchkontaktes beim Trampolinsprung. Gezeigt ist eine Masse von 70 kg mit einer Kontaktfläche von 20 cm x 20 cm, die aus einer Höhe von 2.50 m (Abstand der Kontaktfläche zum Tuch) fallen gelassen wird. Die durchgezogene Linie stellt den Bewegungsverlauf dar, wie er sich aus der in Abschnitt 1 vorgestellten Kraft-/Weg-Beziehung (Gleichung 3) und den in Abschnitt 2 gemessenen Parametern (*b* = 1356 mm, l_0 = 179 mm, $D = 14080 \frac{\text{N}}{\text{m}}$) ergibt. Die Tuchkontaktzeit beträgt 346 ms. Zum Vergleich ist eine sinusförmige Bewegung gestrichelt dargestellt, die durch die harmonische Schwingung einer idealen vertikalen Feder beschrieben wird, die bei *s* = 0 entspannt ist und bei einer aus 2,5 m fallenden Masse von 70 kg zur selben Tuchkontaktzeit führen würde. Erklärung der Zeitpunkte t_i in Tabelle 1; die Zeitpunkte t_1 und t_3 beziehen sich nur auf die durchgezogenen Kurven.

In Tab. 3 ist die Zeitspanne $t_1 - t_0$ (= $t_4 - t_3$) aufgetragen; in Tab. 4 die Gesamtdauer eines ungebremsten und unbeschleunigten Sprunges. Kinder im Schulanfängeralter kommen kaum über eine Sprungdauer von einer Sekunde hinaus. (Kampfrichter auf Kinderwettkämpfen können ein Lied davon singen.) Den größeren Teil der Sprungdauer nimmt in den aufgelisteten Fällen jedoch die Flugzeit ein, die alleine von der Sprunghöhe und nicht von der Masse abhängt. Die Gesamtsprungdauer hängt deshalb in erster Linie von der Sprunghöhe ab.

Die maximale Durchdrücktiefe des Trampolintuches ist in Tab. 5 dargestellt. Im tiefsten Punkt ist die Kraft, die auf den Körper des Aktiven wirkt, maximal. Wegen $\ddot{s} = F_V/m$ führt die Tuchkraft besonders bei geringer Masse *m* zu hohen Beschleunigungen. Die maximale Beschleunigung, die im tiefsten Punkt des Tuches erreicht wird, ist in Tab. 6 als Vielfache der Erdbeschleunigung *g* aufgetragen.

	0.5 m	1.0 m	1.5 m	2.0 m	2.5 m	3.0 m	3.5 m	4.0 m
20 kg	249 ms	233 ms	224 ms	217 ms	211 ms	207 ms	203 ms	200 ms
30 kg	304 ms	280 ms	267 ms	257 ms	249 ms	243 ms	238 ms	234 ms
40 kg	348 ms	318 ms	301 ms	289 ms	279 ms	272 ms	266 ms	261 ms
50 kg	386 ms	349 ms	329 ms	315 ms	305 ms	296 ms	289 ms	283 ms
60 kg	418 ms	376 ms	354 ms	338 ms	326 ms	317 ms	309 ms	303 ms
70 kg	447 ms	400 ms	375 ms	358 ms	346 ms	336 ms	327 ms	320 ms
80 kg	472 ms	422 ms	395 ms	377 ms	363 ms	353 ms	344 ms	336 ms
90 kg	495 ms	442 ms	413 ms	394 ms	379 ms	368 ms	359 ms	351 ms

Tab. 2: Tuchkontaktzeiten bei verschiedenen Sprunghöhen (Abstand Fußsohle – Sprungtuch) und Gewichten.

	0.5 m	1.0 m	1.5 m	2.0 m	2.5 m	3.0 m	3.5 m	4.0 m
20 kg	16 ms	11 ms	9 ms	8 ms	7 ms	6 ms	6 ms	5 ms
30 kg	24 ms	17 ms	14 ms	12 ms	11 ms	10 ms	9 ms	8 ms
40 kg	31 ms	22 ms	18 ms	16 ms	14 ms	13 ms	12 ms	11 ms
50 kg	39 ms	28 ms	23 ms	20 ms	18 ms	16 ms	15 ms	14 ms
60 kg	46 ms	33 ms	27 ms	23 ms	21 ms	19 ms	18 ms	17 ms
70 kg	52 ms	38 ms	31 ms	27 ms	24 ms	22 ms	20 ms	19 ms
80 kg	59 ms	43 ms	35 ms	31 ms	27 ms	25 ms	23 ms	22 ms
90 kg	65 ms	47 ms	39 ms	34 ms	30 ms	28 ms	26 ms	24 ms

Tab. 3: Zeit $t_1 - t_0$ von der Tuchberührung bis zum Vorzeichenwechsel der Beschleunigung.

	0.5 m	1.0 m	1.5 m	2.0 m	2.5 m	3.0 m	3.5 m	4.0 m
20 kg	0.89 s	1.14 s	1.33 s	1.49 s	1.64 s	1.77 s	1.89 s	2.01 s
30 kg	0.94 s	1.18 s	1.37 s	1.53 s	1.68 s	1.81 s	1.93 s	2.04 s
40 kg	0.99 s	1.22 s	1.41 s	1.57 s	1.71 s	1.84 s	1.96 s	2.07 s
50 kg	1.02 s	1.25 s	1.44 s	1.59 s	1.73 s	1.86 s	1.98 s	2.09 s
60 kg	1.06 s	1.28 s	1.46 s	1.62 s	1.75 s	1.88 s	2.00 s	2.11 s
70 kg	1.09 s	1.30 s	1.48 s	1.64 s	1.77 s	1.90 s	2.02 s	2.13 s
80 kg	1.11 s	1.33 s	1.50 s	1.65 s	1.79 s	1.92 s	2.03 s	2.14 s
90 kg	1.13 s	1.35 s	1.52 s	1.67 s	1.81 s	1.93 s	2.05 s	2.16 s

Tab. 4: Gesamtdauer eines Sprunges in Abhängigkeit der Sprunghöhe und der Masse des Turners.

Üblicher Weise wird ein 20 kg schweres Kind keine Sprunghöhe von 4 m erreichen. Aber schon bei vergleichsweise geringen Sprunghöhen muss gerade der leichtgewichtige Körper hohe Beschleunigungsspitzen auf sich nehmen, wie in Tab. 6 zu erkennen ist. Hier wird die Sportmedizin klären müssen, welche Belastungen dem kindlichen Körper ohne Gefährdung zumutbar sind, solange die Knochen und Gelenke noch im Wachstum begriffen sind und die Muskulatur nicht so stark ausgeprägt ist.

	Ruhe	0.5 m	1.0 m	1.5 m	2.0 m	2.5 m	3.0 m	3.5 m	4.0 m
20 kg	53 mm	277 mm	359 mm	419mm	468 mm	510 mm	547 mm	580 mm	611 mm
30 kg	78 mm	348 mm	442 mm	511 mm	566 mm	566 mm 614 mm		693 mm	727 mm
40 kg	104 mm	409mm	511 mm	586 mm	646mm	697 mm	$743~{ m mm}$	783 mm	820 mm
50 kg	128 mm	463 mm	571 mm	650mm	714 mm	769 mm	817 mm	860 mm	899 mm
60 kg	152 mm	512 mm	625 mm	707 mm	774 mm	832 mm	882 mm	927 mm	$969 \mathrm{mm}^{(*)}$
70 kg	175 mm	557 mm	673 mm	759 mm	828 mm	888 mm	941 mm	988 mm	1031 mm
80 kg	198 mm	599 mm	718 mm	806 mm	878 mm	940 mm	994 mm	1043 mm	1088 mm
90 kg	219 mm	637 mm	759 mm	850 mm	924 mm	987 mm	$1044 \ { m mm}$	$1094 \ \text{mm}$	1141 mm

Tab. 5: Maximale Durchdrücktiefe des Trampolintuches. In der ersten Spalte ist die Auslenkung des Trampolintuches in Ruhe dargestellt; bei dieser Tiefe entspricht die vertikale Kraft des Trampolintuches der jeweiligen Gewichtskraft. (*) FIG-Vorschrift für Wettkampftrampoline: Dynamische Durchdrücktiefe einer aus 4 m fallenden Kugel (Durchmesser 40 cm, Masse 60 kg): zwischen 920 mm und 990 mm (FIG, 2001).

	0.5 m	1.0 m	1.5 m	2.0 m	2.5 m	3.0 m	3.5 m	4.0 m
20 kg	5.0 g	7.3 g	9.3 g	11.1 g	12.8 g	14.3 g	15.9 g	17.3 g
30 kg	4.3 g	6.4 g	8.2 g	9.8 g	11.3 g	12.7 g	14.1 g	15.4 g
40 kg	4.0 g	5.9 g	7.6 g	9.0 g	10.4 g	11.7 g	13.0 g	14.2 g
50 kg	3.8 g	5.6 g	7.1 g	8.5 g	9.8 g	11.0 g	12.2 g	13.3 g
60 kg	3.6 g	5.3 g	6.8 g	8.1 g	9.4 g	10.5 g	11.6 g	12.6 g
70 kg	3.5 g	5.2 g	6.6 g	7.8 g	9.0 g	10.1 g	11.1 g	12.1 g
80 kg	3.4 g	5.0 g	6.4 g	7.6 g	8.7 g	9.7 g	10.7 g	11.6 g
90 kg	3.4 g	4.9 g	6.2 g	7.3 g	8.4 g	9.4 g	10.3 g	11.2 g

Tab. 6: Maximale Beschleunigung im Trampolintuch, ausgedrückt als Vielfaches der Erdbeschleunigung *g*.

6 Diskussion

Die vereinfachte Vorstellung der Kraft-/Tiefe-Beziehung des Trampolintuches als ideale Feder, die dem Hookeschen Gesetz $F = -D \cdot s$ genügt, erlaubt nur eine grobe Beschreibung des Systems. Für biomechanische und physikalische Betrachtungen der Stützphase (= Tuchkontaktphase) kann sie zu ungenau sein.

Es ist davon auszugehen, dass es in der bisherigen wissenschaftlichen Betrachtung des Federverhaltens des Sprungtuches und der Kräfte und Wege während der Stützphase bereits zu Fehlinterpretationen gekommen ist, die auf die unangemessen vereinfachte Annahme der Federeigenschaft zurückzuführen sind.

So nehmen Glitsch und Henrichs (1992, Bild 2b) an, dass die Tuchkontaktzeit unabhängig von der Sprunghöhe ist, obwohl die dort dargestellten Messwerte eine leichte Abnahme der Kontaktzeit bei zunehmender Sprunghöhe andeuten.

Die Unabhängigkeit der Tuchkontaktzeit von der Sprunghöhe gilt nur für den Fall einer tatsächlich konstanten Feder-"konstante" D = -F/s. In diesem Fall ist die Periodendauer *T* einer Federschwingung der Masse *m* (Hering *et al.*, 1992)

$$T=2\pi\sqrt{rac{m}{D}}$$
 .

Wie hier gezeigt wird, ist das Verhältnis $F_V(s)/s$ jedoch auf dem Trampolintuch keine Konstante, sondern eine mit zunehmender Durchdrücktiefe ansteigende Funktion D'(s). Je höher ein Turner der festen Masse *m* springt, umso tiefer dringt er in das Tuch ein. Je tiefer er eindringt, desto höher steigt D'(s) und desto kürzer wird die Amplitudendauer *T*: die Tuchkontaktzeit verringert sich.

Glitsch und Henrichs stellen in der zitierten Abbildung (zugl. in Henrichs, 1991, Abb. 5.3) die Kontaktzeiten eines 78 kg schweren Aktiven bei Sprunghhöhen zwischen 1,70 m und 2,50 m dar. Wie in der vorliegenden Arbeit gezeigt wird (Tab. 2), ist die Kontaktzeit eines 80 kg schweren Aktiven bei einer Sprunghöhe von 2,50 m über 20 ms geringer als bei einer Sprunghöhe von 1,70 m.

Auch Messungen von Vaughan (1980, Tab. 1, Sprünge 1–3) zeigen deutlich die Abnahme der Kontaktzeit bei zunehmender Sprunghöhe.

In der Arbeit von Bradt (1988) werden in den Tabellen 9 und 11 drei (verschiedene) Sprünge verglichen. Hier wurde bei dem höher gesprungenen Salto c eine *längere* Tuchkontaktzeit gemessen als bei den niedriger gesprungenen Salto a und Doppelsalto. Von der Physik des Trampolintuches her müsste eigentlich der höhere Sprung eine niedrigere Kontaktzeit aufweisen (Tab. 2). Es scheint, als ob die Absprungbewegung zu unterschiedlichen Sprüngen eine stärkere Auswirkung auf die Kontaktzeit hat als die hier beschriebenen rein mechanischen Abhängigkeiten bei *starren* Körpern.

Vaughan (1980) hat die vertikalen Positionen während der Stützphase über der Zeit gemessen und in Bild 4 (dort) dem sinusförmigen Verlauf gegenübergestellt, der sich aus der Annahme einer idealen Hookeschen Feder ergibt. In der Darstellung des Beschleunigungsverlaufes (Bild 4c) ist bei Vaughan sehr deutlich erkennbar, dass die tatsächlichen Beschleunigungswerte zunächst geringer sind als in der Sinuskurve. Im tiefsten Punkt übersteigt dagegen die tatsächlich gemessene Beschleunigung den "theoretischen" Wert der Sinuskurve. Auch im Zeitabschnitt kurz nach der Tuchberührung bzw. kurz vor dem Verlassen des Tuches ändert sich die tatsächlich gemessene Beschleunigung langsamer als es die Theorie der idealen Feder und des sinusförmigen Verlaufes der Beschleunigung nahelegen würde.

Die Abb. 4c in der Arbeit von Vaughan gab unter Anderem den Impuls für die hier vorliegende Arbeit; während Vaughan die Abweichungen u.a. mit den Dämpfungseigenschaften des Trampolins erklärt, wird in dieser Arbeit gezeigt, dass die Abweichungen zwingend daraus resultieren, dass sich das Trampolin (auch ohne Berücksichtigung der Dämpfung) nicht wie eine ideale Feder verhält (Abb. 5).

Riehle (1979, Abb. 25 und 26) hat den Verlauf der Beschleunigung bei Standsprüngen elektronisch gemessen. Die gemessenen Verläufe der Beschleunigung über der Zeit gleichen zumindest teilweise ebenfalls dem in der hier vorliegenden Arbeit theoretisch hergeleiteten Verlauf eher als dem dort vereinfacht angenommenen sinusförmigen Verlauf.

Abschließend kann festgestellt werden, dass die vereinfachte Modellierung der Federeigenschaften des Trampolintuches durch eine ideale (hookesche) Feder für eine genaue Beschreibung des Bewegungsverlaufes während der Tuchkontaktzeit (Stützphase) nicht ausreichend ist.

Für eingehendere biomechanische Untersuchungen, die sich mit der Kontaktzeit und der Bahnkurve und den Beschleunigungen während der Stützphase befassen, muss mindestens das in der vorliegenden Arbeit entwickelte Modell zu Grunde gelegt werden. Mit Hilfe des Modells können zwei bereits tatsächlich gemessene und in der Literatur veröffentlichte Erscheinungen erklärt werden: Zum einen ist die Tuchkontaktzeit nicht unabhängig von der Sprunghöhe, sondern nimmt mit zunehmender Sprunghöhe ab. Zweitens unterscheidet sich der Verlauf der Beschleunigung von dem sinusförmigen Verlauf dadurch, dass nach der Tuchberührung zunächst eine geringere Beschleunigung wirkt, diese jedoch in der Nähe des tiefsten Punkte höher ist als im sinusförmigen Verlauf.

Danksagung

Für die Mitwirkung bei den experimentellen Messungen danke ich Klaus Willig ganz herzlich. Für kritische Hinweise zum Manuskript danke ich Dr. Ulrich Glitsch ebenfalls sehr herzlich.

Anhang

A Inverse Formel $s(F_V)$

Für manche Fragestellungen wird die inverse Formel zu Gl. 3, $s(F_V)$, benötigt. Diese Formel zur Berechnung der Durchdrücktiefe s in Abhängigkeit von der vertikalen Kraft F_V konnte mit der Software Maple V wie folgt bestimmt werden. c und h_1 bis h_3 sind Hilfsvariablen zur Gliederung der umfangreichen Formel.

$$\begin{split} c &= \frac{F_V}{2D} \\ h_1 &= \frac{22}{9}b^2c^2l_0^2 - 4b^3c^2l_0 + 2b^4c^2 - \frac{1}{27}l_0^6 + \frac{2}{9}l_0^5b + \frac{1}{9}l_0^4c^2 - \frac{4}{9}l_0^4b^2 - \frac{4}{9}l_0^3bc^2 - \frac{1}{9}l_0^2c^4 + \frac{8}{27}l_0^3b^3 + \\ &\quad \frac{2}{9}l_0bc^4 + \frac{1}{27}c^6 + \frac{2}{9}(-3l_0^8b^2c^2 + 18b^5c^6l_0 + 3b^4c^8 + 24b^7c^2l_0^3 - 45b^4c^6l_0^2 - 6b^3c^8l_0 + \\ &\quad 81b^8c^4 - 432b^5c^4l_0^3 + 522b^6c^4l_0^2 - 324b^7c^4l_0 - 84b^6c^2l_0^4 - 9l_0^4b^2c^6 + 24l_0^7b^3c^2 + 3l_0^2b^2c^8 + \\ &\quad 114l_0^5b^5c^2 + 198l_0^4b^4c^4 + 36l_0^3b^3c^6 + 9l_0^6b^2c^4 - 75l_0^6b^4c^2 - 54l_0^5b^3c^4)^{\frac{1}{2}} \end{split}$$

$$h_2 &= h_1^{\frac{1}{3}} \\ h_3 &= ((3c^2h_2 + 6l_0^2h_2 - 12l_0bh_2 + 9h_2^2 + l_0^4 - 4l_0^3b - 2l_0^2c^2 + 4b^2l_0^2 + 4l_0bc^2 + c^4)/h_2)^{\frac{1}{2}} \\ s &= \frac{1}{2}c + \frac{1}{6}h_3 + \frac{1}{6}(-(-6c^2h_2h_3 - 12l_0^2h_2h_3 + 24l_0bh_2h_3 + 9h_2^2h_3 + h_3l_0^4 - 4h_3l_0^3b - \\ &\quad 2h_3l_0^2c^2 + 4h_3b^2l_0^2 + 4h_3l_0bc^2 + h_3c^4 - 54ch_2l_0^2 + 108ch_2l_0b - 108ch_2b^2)/(h_2h_3))^{\frac{1}{2}} \end{split}$$

B Numerische Simulation der nichtlinearen Differentialgleichung

Grundlage der numerischen Simulation der vertikalen Bahnkurve (*s*), Geschwindigkeit (*s*) und Beschleunigung (*s*) war das nachfolgende C-Programm.

/*_____ __*/ /* Numerische Simulation der Vertikalbewegung im Trampolintuch in der */ * / /* Programmiersprache C. 3. Januar 2000, Martin Kraft /*_____ ____* / #include<stdlib.h> #include<stdio.h> #include<math.h> /* Alle Konstanten und Variablen sind in * / /* SI-Einheiten, also m, s, kg usw. */ double tstep = 0.000001; double printstep = 0.01; /* Schrittweite fuer die Simulation. * / /* Schrittweite fuer die Ausgabe. * / double b = 1.356;/* Trampolineigenschaften b, D und 10; siehe */ /* Text. double D = 14080;*/ double 10 = 0.179;double g = -9.81;/* Erdbeschleunigung. */ /* Masse des Aktiven. double m = 70;*/ double h0 = 2.5;/* Fallhoehe (Abstand Fussohlen - Tuch in der * / /* oberen Ruhelage.) * / /*_____* /* Funktion fv (s): Siehe Text, Gleichung 3. * / /*_____*/ double fv (double s) { double wurzelterm = sqrt (s * s + b * b); return -D * 2 * s * (10 + wurzelterm - b) / wurzelterm; } /*_____ __*/ /* Simulation einer Tuchkontaktphase (von Zeitpunkt t0 bis t4) im */ * / /* Hauptprogramm. /*_____ ____*/ void main () { double t = sqrt (2 * h0 / -g), /* Fallzeit aus der Hoehe h0. */ /* Die Zeit t ist hier so definiert, dass */ /* t = 0 im Zeitpunkt der oberen Ruhelage. */ /* Die Simulation beginnt mit dem Moment der */ /* Tuchberuehrung nach der Fallzeit aus der */ /* Hoehe h0. */ /* Der Zeitpunkt t = 0 kann ohne weiteres auch */ */ /* als Zeitpunkt der Tuchberuehrung definiert */ /* werden und die Simulation mit t = 0 /* beginnen. */ /* Hoehe s = 0 im Moment der Tuchberuehrung. */ s = 0,sp = g * sqrt (2 * h0 / -g), /* s punkt beginnt mit dem Wert der * / */ /* vertikalen Fallgeschwindigkeit im Moment /* der Tuchberuehrung. */ */ spp = g; /* s punkt punkt (vertikale Beschlunigung) puts ("Erster Tuchkontakt:"); printf ("t = %7.5f s: s = %8.5f m; sp = %7.4f m/s; spp = %7.3f m/s/s.\n\n", t, s, sp, spp); /* Beginn der Simulation. */ while (s <= 0)ł spp = fv (s) / m + g;/* Nichtlineare Differentialgleichung der /* vertikalen Tuchbewegung; siehe Text, Gl. 4. */ /* s punkt punkt beginnt mit dem Wert der Erd- */

Ausgabe des vorstehenden C-Programms

Εı	rst	cer	Tuchl	cont	tał	٢t	:									
t	=	0.	71392	s:	S	=	0.00000	m ;	sp	=	-7.0036	m/s;	spp	=	-9.810	m/s/s.
t	=	Ο.	72000	s:	s	=	-0.04273	m;	sp	=	-7.0563	m/s;	spp	=	-7.534	m/s/s.
t	=	0.	73000	s:	s	=	-0.11361	m;	sp	=	-7.1124	m/s;	ggg	=	-3.639	m/s/s.
t	=	Ο.	74000	s:	s	=	-0.18485	m ;	sp	=	-7.1279	m/s;	gqg	=	0.597	m/s/s.
t	=	Ο.	75000	s:	s	=	-0.25602	m ;	sp	=	-7.0987	m/s;	gqg	=	5.337	m/s/s.
t	=	Ο.	76000	s:	s	=	-0.32665	m ;	sp	=	-7.0191	m/s;	gqg	=	10.708	m/s/s.
t	=	Ο.	77000	s:	s	=	-0.39621	m ;	sp	=	-6.8822	m/s;	gqg	=	16.782	m/s/s.
t	=	0.	78000	s:	s	=	-0.46408	m;	sp	=	-6.6810	m/s;	ggg	=	23.565	m/s/s.
t	=	0.	79000	s:	s	=	-0.52959	m;	sp	=	-6.4088	m/s;	ggg	=	30.984	m/s/s.
t	=	0.	80000	s:	s	=	-0.59200	m;	sp	=	-6.0597	m/s;	ggg	=	38.895	m/s/s.
t	=	0.	81000	s:	s	=	-0.65052	m;	sp	=	-5.6299	m/s;	ada	=	47.082	m/s/s.
t	=	0.	82000	s:	s	=	-0.70433	m;	sp	=	-5.1180	m/s;	ada	=	55.277	m/s/s.
t	=	0.	83000	s:	s	=	-0.75261	m;	sp	=	-4.5254	m/s;	ada	=	63.175	m/s/s.
t	=	0.	84000	s:	s	=	-0.79458	m;	sp	=	-3.8566	m/s;	ada	=	70.455	m/s/s.
t	=	0.	85000	s:	s	=	-0.82951	m;	sp	=	-3.1194	m/s;	ada	=	76.805	m/s/s.
t	=	0.	86000	s:	s	=	-0.85677	m;	sp	=	-2.3245	m/s;	ada	=	81.943	m/s/s.
t	=	0.	87000	s:	s	=	-0.87585	m;	sp	=	-1.4854	m/s;	ggg	=	85.631	m/s/s.
t	=	0.	88000	s:	s	=	-0.88638	m;	sp	=	-0.6173	m/s;	ggg	=	87.700	m/s/s.
t	=	0.	89000	s:	s	=	-0.88816	m;	sp	=	0.2629	m/s;	ggg	=	88.051	m/s/s.
t	=	0.	90000	s:	s	=	-0.88114	m;	sp	=	1.1379	m/s;	ggg	=	86.668	m/s/s.
t	=	0.	91000	s:	s	=	-0.86547	m;	sp	=	1.9907	m/s;	spp	=	83.616	m/s/s.
t	=	0.	92000	s:	s	=	-0.84146	m;	sp	=	2.8051	m/s;	spp	=	79.038	m/s/s.
t	=	Ο.	93000	s:	s	=	-0.80955	m ;	sp	=	3.5670	m/s;	gqg	=	73.145	m/s/s.
t	=	Ο.	94000	s:	s	=	-0.77033	m ;	sp	=	4.2645	m/s;	spp	=	66.203	m/s/s.
t	=	Ο.	95000	s:	s	=	-0.72450	m ;	sp	=	4.8886	m/s;	spp	=	58.516	m/s/s.
t	=	Ο.	96000	s:	s	=	-0.67282	m ;	sp	=	5.4334	m/s;	spp	=	50.403	m/s/s.
t	=	Ο.	97000	s:	s	=	-0.61610	m ;	sp	=	5.8963	m/s;	spp	=	42.177	m/s/s.
t	=	Ο.	98000	s:	s	=	-0.55517	m ;	sp	=	6.2775	m/s;	spp	=	34.126	m/s/s.
t	=	Ο.	99000	s:	s	=	-0.49081	m ;	sp	=	6.5802	m/s;	spp	=	26.487	m/s/s.
t	=	1.	00000	s:	s	=	-0.42381	m ;	sp	=	6.8092	m/s;	spp	=	19.435	m/s/s.
t	=	1.	01000	s:	s	=	-0.35485	m ;	sp	=	6.9712	m/s;	spp	=	13.071	m/s/s.
t	=	1.	02000	s:	s	=	-0.28459	m ;	sp	=	7.0730	m/s;	spp	=	7.422	m/s/s.
t	=	1.	03000	s:	s	=	-0.21357	m ;	sp	=	7.1218	m/s;	spp	=	2.440	m/s/s.
t	=	1.	04000	s:	s	=	-0.14230	m ;	sp	=	7.1237	m/s;	spp	=	-1.981	m/s/s.
t	=	1.	05000	s:	s	=	-0.07123	m ;	sp	=	7.0836	m/s;	spp	=	-5.992	m/s/s.
t	=	1.	06000	s:	S	=	-0.00076	m ;	sp	=	7.0046	m/s;	spp	=	-9.769	m/s/s.
Le	etz	zte	r Tucl	ıkoı	nta	akt	::									
t	=	1.	06011	s:	s	=	0.00000	m ;	sp	=	7.0036	m/s;	spp	=	-9.810	m/s/s.

Literatur

BRADT, INKE. 1988. Zweidimensionale Untersuchung kinematischer Merkmale des Absprungs

vom Trampolin bei Sprüngen unterschiedlicher Schwierigkeitsgrade. Diplomarbeit, DS-HS Köln.

FIG (Hrsg.). 2001. FIG Code of Points – Trampoline. Internationaler Turnverband, CH-Moutier.

- GLITSCH, ULRICH UND BIRGIT HENRICHS. 1992. Pressure distribution under the foot during take-off in trampolining. S. 301–307 in: Biomechanics in Gymnastics, Köln.
- HENRICHS, BIRGIT. 1991. Druckverteilung unter dem Fuß beim Trampolinspringen. Diplomarbeit, DSHS Köln.
- HERING, EKBERT, ROLF MARTIN UND MARTIN STOHRER. 1992. Physik für Ingenieure. 4., verb. Aufl. VDI-Verlag, Düsseldorf.
- RIEHLE, HARTMUT. 1979. Die Biomechanik der Wirbelsäule beim Trampolinturnen: Bewegungs- und Belastungsanalysen sowie röntgenologische Untersuchungen. Schriften der Deutschen Sporthochschule Köln, Nr. 2. Richarz, St. Augustin.

TIPLER, PAUL A. 1994. Physik. Spektrum Akademischer Verlag, Heidelberg.

VAUGHAN, C. L. 1980. A kinetic analysis of basic trampoline stunts. *Journal of Human Movement Studies*, **6**, 236–251.

WALCHER, WILHELM. 1989. Praktikum der Physik. 6. Aufl. Teubner, Stuttgart.

Anschrift des Autors

Martin Kraft Blücherstraße 2 D-38102 Braunschweig

E-Mail: martin.kraft@fal.de

WWW: http://www.priconet.de/mkraft